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A single oxygen hole in the copper-oxide planes 

W Barfordt 
Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 OQX, UK 

Received 22 August 1989, in final form 7 November 1989 

Abstract. The strong-coupling behaviour of a single oxygen hole in the copper-oxide planes 
of the high-T, superconductors is determined by exact diagonalisation on a finite cluster. 
The only energy scales are those determined by the hybridisation of the hole via Cu+ or Cu3+ 
excitations. As is already known for hole motion via virtual Cu3+ excitations the relevant 
two-band model (‘d-p’ model) may be mapped onto an effective one-band model, and the 
constant phase Nagaoka ‘ferromagnetism’ (S = ( N  - 1)/2, where N is the number of lattice 
sites)isthegroundstate. However, holemotionviavirtualCu+excitationsismoreinteresting 
and it is shown that the one-band model is not a useful approximation: the magnetic phase 
coherence preferred by the propagating hole is a total spin singlet. The stability of the total 
spin singlet state with respect to the ‘ferromagnetic’ state is discussed as the oxygen energy 
level is raised from the lower Hubbard copper band to the upper Hubbard band. Finally, the 
consequences of this calculation if super-exchange between the copper spins were included 
are considered. 

1. Introduction 

The understanding of the behaviour of a single oxygen hole in the indigenous copper- 
oxide planes of high-T, superconductors is an important step to the complete under- 
standing of superconductivity in these materials. Many authors have chosen as their 
starting point the simplified ‘t-J’ model assuming that a one-band model includes the 
basic physics (Anderson 1987, Zhang and Rice 1988). In this paper no such assumption 
is made but rather the behaviour of a single hole is analysed in the full two-band model 
in which the oxygen states are explicitly taken into account (the ‘d-p’ or ‘Emery’ model 
Emery 1987). It will be shown that, in general, the ground state and low-lying excitations 
of the two-band model do not resemble those of a one-band model except in the specific 
case where oxygen hole motion arises predominantely via Cu3+ excitations. In the limit 
for which hole motion via Cu+ excitations is forbidden the mapping is indeed exact 
(Long and Barford 1990a, Zhang 1989). 

The strong-coupling limit is assumed so that the occupation of copper sites is restric- 
ted to one, and super-exchange is suppressed since the magnetic coherence of the copper 
spins induced by the propagating hole will be of particular interest here. The problem is 
solved by exact diagonalisation of the relevant Hamiltonian for a non-trivial cluster. The 
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evolution of the ground state will be calculated as the oxygen energy level is lowered 
from the Cu3+ limit to the Cu+ limit. 

In the Cu3+ limit the added oxygen hole is bound in a singlet to a copper spin and this 
quasiparticle propagates through the lattice like a vacancy in a one-band model. In the 
strong-coupling limit the ground state consists of the remaining copper spins being driven 
ferromagnetic with a total S = ( N  - 1)/2 (Nagaoka 1966)-and this is derived in the 
cluster calculation. As the Cu+ limit is approached, however, there is an amplitude for 
the oxygen hole to be bound in a triplet with a copper spin and this seriously complicates 
the issue. The mapping to a one-band model is now not exact but it is approximate 
provided Cu3+ excitations dominate. When Cu+ excitations dominate, however, the 
mapping is not even approximate: the magnetic coherence of the copper spins is a total 
spin singlet with the ferromagnetic solution considerably higher in energy. Furthermore 
this paramagnetic state is stable over a wide range of energies. The exotic ground state 
foundwhen Cu' excitationspredominate is not surprising as the CuOzlatticeis frustrated 
and the hopping matrix element is positive in this limit. 

The plan of this paper is as follows: in the rest of this section the nomenclature will 
be introduced by writing down the two-band tight-binding Hamiltonian and its unitary 
transformation to second order in the hopping amplitude. In section 2 it is shown that 
the Hamiltonian can be considerably simplified as the anti-symmetric oxygen states are 
decoupled from the symmetric states. In the third section the exact diagonalisation is 
performed and the results discussed. Section 4 concludes. 

The natural tight-binding Hamiltonian is 

where d $  andp:, create holes with spin U in a copper dxz-yz orbital (site i) and oxygen 
po orbital (site j )  respectively. 

The copper Hubbard U is large (2.10 eV) so it will be assumed to be limiting large 
and therefore doubly occupied copper sites are forbidden. The oxygen Hubbard U 
(denoted Up) is also not small ('5 eV) and the nearest-neighbour Coulomb repulsion, 
V ,  probably plays an important role in pairing mechanisms (Long and Barford 1990a, b). 
Nevertheless it is convenient to set both of them to zero which considerably simplifies 
matters as will be explained later. Finally, the hopping amplitude, t ,  is assumed to be 
muchsmallerthan Uand A (= - cd), andhenceistreatedasaperturbationparameter. 
(See Hass (1989) for a review of the spectroscopic data.) As in Long and Barford 
(1990a), a unitary transformation on (1.1) is performed so that the leading order term 
is O(t2).  The effective Hamiltonian that describes the motion of the hole is then 

where 

is the singlet operator and (ij) represents nearest-neighbour copper and oxygen sites. 
(Henceforward the constant energy term in (1.2) will be ignored.) 
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The first term arises from motion of the oxygen hole via Cu3+ excitations with the 
amplitude -2t2 = -2[ t2 / (  U - A ) ] .  The sum includes j = j ' .  The second term represents 
hole motion via Cu+ excitations with the amplitude t l  = t 2 / A  which is positive and 
therefore topological frustration will play a role in this limit. The sum includes j = j '  
only if U, = 0. In the next section this Hamiltonian will be simplified by decoupling the 
anti-symmetric oxygen orbitals. 

2. Decoupling of the anti-symmetric oxygen states 

There is an important simplification of the Hamiltonian, valid only for U,  = 0, that is 
worth emphasising (see also Zhang and Rice 1989). Consider the part of the Hamiltonian 
arising from Cu+ excitations. It may be written in the form 

H = t l  H i  
i 

the sum being over the copper sites and where 

Hi = p!ud!u8diupj,uf 
b,j'€i}uu' 

( j  and j '  both being neighbours of i ) .  

surrounding oxygen atoms) for a copper and an oxygen hole. Consequently 
H i  can now be diagonalised for the ith plaquette (namely one copper atom and four 

16 

Hi = E , X L X ,  (2 .3)  
,= 1 

where E ,  is the eigenvalue corresponding to the eigenfuction IX,) = XLlO). Since H i  
commutes with S2,  the eigenfunctions will be eigenstates of S 2  with S = 0 or 1. 

There are four non-zero eigenvalues: one at -4t1 corresponding to the constant 
phase singlet solution: 

1 
(Si) = ISij)  (2 .4)  

2jEi 
and three at +4tl  corresponding to the constant phase triplet solutions, with S, = -1,0 
and 1, denoted by ITi) and defined in (3 .2) .  All the anti-symmetric solutions are non- 
bonding orbitals at E = 0 and so may be discarded. Thus, upon reconstituting the lattice, 
the Cu+ Hamiltonian is 

1 i 

where the four bonding states have been decoupled from the remaining four anti- 
symmetric states (since there are eight spin degrees of freedom per unit cell). It should 
be emphasised that this simplification only works if Up = 0, since otherwise the anti- 
symmetric solutions have non-zero eigenvalues. 

The Cu3+ Hamiltonian can likewise be diagonalised in the S = 0 sub-space obtaining 
for the full Hamiltonian: 

This Hamiltonian does represent hole motion through the lattice because a singlet 
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Figure 1. The cluster used in the exact diag- 
onalisation. 

or triplet state on the ith site is in general not orthogonal to a singlet or triplet state on 
the neighbours of i; the overlaps are shown in the appendix. (The overlaps show that a 
singlet quasiparticle on the ith site can be scattered into a triplet (S, = 0) quasiparticle on 
the neighbours of iwith a matrix element It 1, for example.) Furthermore the Hamiltonian 
represents the motion of singlet and triplet quasiparticles on the square lattice topology. 
This Hamiltonian will now be solved for a finite cluster; the primary utility of this section 
being to halve the necessary number of basis states needed in the diagonalisation which 
follows. 

3. Exact diagonalisation and discussion 

To understand the behaviour of the Hamiltonian (2.6) for the motion of a single oxygen 
hole, (2.6) is exactly diagonalised for the cluster as shown in figure 1 which consists of 
six copper-oxygen plaquettes. Free boundary conditions are used and full use is made 
of the point group symmetries. A calculation on a cluster of this size will provide valid 
qualitative insight to the lattice problem. 

The form of the Hamiltonian (2.6) suggests a natural representation for the basis 
states which is convenient to employ. For the full lattice (of N copper sites) the Hilbert 
space of (2.6) is spanned by the 4N2N-1 (symmetric) basis states 

(3. la) 

(3. lb) 

(3. IC) 

(3. Id) 
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( 3 . 2 ~ )  

(3 .2b )  

( 3 . 2 ~ )  

are the constant phase triplet operators (S, = - 1 ,  0 and 1 respectively). These basis 
states form a complete but not orthogonal set (as shown in the appendix). Thus it is 
impossible to diagonalise each of the components of the Hamiltonian (2 .6)  in one of the 
sub-spaces represented by ( 3 . l u ,  b,  c ,  d )  as one might naively hope (unless t l  = 0). 

There are seven spins in the cluster of figure 1 and hence 35 eigenstates of S 2 .  The 
Hamiltonian is diagonalised in the sub-space of total S, = 4 (which include S = i,$, 5,H) 
and of S, = $ , I ,  4 using basis states of the form of (3 .1 ) .  The energies and total spin of 
the lowest lying eigenfunctions for f = 0 (Cu3+ limit) and t 2  = 0 (Cu’ limit) will now be 
calculated. 

In the Cu3+ limit an exact mapping exists onto a one-band model with only nearest- 
neighbour hopping. The Hamiltonian is completely diagonalised in the singlet sub-space 
( 3 . 1 ~ )  (Zhang 1989) and may be written as 

if the S ;  are assumed to be orthogonal. 

ferromagnetic with the spectrum given by 
In the strong coupling limit the singlet drives the remaining ( N  - 1) copper spins 

~k = -8t2 - ~ C ~ ( C O S ( ~ , U )  + COS(~,U))  (3 .4 )  

for the lattice. The ground state is therefore the constant phase (k = 0) solution 
N 

with energy - 12t2 and total S = ( N  - 1) /2 .  
By exactly diagonalising this Hamiltonian on the cluster this result is reproduced 

along with the excited states. The energy, total spin and point group symmetry of the 
lowest lying states are shown in table 1. Since free boundary conditions are used there 
is no translational invariance and hence no Bloch momenta. However, k = 0 and k = 
( n / a ) ( l ,  0) are included in the fully symmetric point group and k = ( n / u )  (0 , l )  is 
included in the class which is symmetric for a reflection along the Ox axis and anti- 
symmetric for a reflection along the Oy axis. 

As expected the ground state is at - ( 9  + V?)f2 with five of the copper spins polar- 
ised; the oxygen hole being bound in a singlet with the remaining copper spin, which is 
delocalised with constant phase. 
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Table 1. The t l  = 0 case, Cu3+ excitations. 

State Energy ( t2 )  Total spin y-symmetry x-symmetry 

I4 -10.414 512 + + 

ip) -10.310 112 + + 
- + -10.363 312 

- 10.259 312 
-10.243 312 

+ - 
- - 

- + -10.192 112 

Table 2. The tz  = 0 case, Cu' excitations 

State energy (tl) Total spin y-symmetry x-symmetry 

Ip) -4.932 112 + + 
- + 

+ 
- - 

-4.919 112 

-4.891 112 

- 
-4.912 312 
-4.900 312 + - 

I a) -4.878 512 + + 

Turning to the more interesting limit in which hole motion via Cu3+ excitations are 
excluded by setting t2 = 0 in (2.6) and diagonalising the Hamiltonian the ground state 
and low-lying excitations are found to be as shown in table 2. 

Clearly, the ground state and low-lying excitations are significantly different from 
those of table 1. The ground state is not the 'Zhang and Rice' state (denoted by I a)) but 
a total spin singlet (denoted by lp)) with (a) considerably higher in energy. The la(t2 = 
0)) state differs from the Ia(tl = 0)) state as in the former there is a probability of 
approximately 0.04 for the oxygen hole to be bound with a copper spin in a triplet 
quasiparticle. 

The cluster calculation suggests that the ground state in the Cu+ limit is a total spin 
singlet; however, this is not a proof. Nevertheless, the following observations are 
suggestive and together with the calculation make the proposition that the ground state 
is a total spin singlet very plausible: 

(i) Eigenstates of the Cu+ Hamiltonian (2.5) contain total ferromagnetism, i.e. S = 
S,,, = ( N  + 1)/2 and if tl + -tl this is the ground state. The S = ( N  + 1)/2 branch of 
the excitation spectrum would then be described by the Hamiltonian 

i ( i i ' )  

if the TLi are assumed to be orthogonal (cf (3.3) and the appendix). The spectrum is 
then 

E k  = -4f1 - 2tl(cos(k,a) + cos(kya)) (3.7) 

with a ground state with energy -8t1 at k = 0, and a maximum energy of.Otl at k = QAF. 
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(ii) If there was no amplitude for the scattering of a singlet quasiparticle into a triplet 
quasiparticle, then the ground state and low-lying excitations would be exactly described 
by (3.3) with t2 + i t l .  Thus, the ground state would be 'Zhang and Rice' ferromagnetism 
(total S = ( N  - 1)/2) at an energy -6t,. However, since there is an amplitude for the 
hole to be in a triplet quasiparticle, hybridisation energy is lost as, firstly these hop with 
a positive hopping matrix and secondly they have a positive 'on site' energy. -6t, is 
therefore a lower bound on the 'Zhang and Rice' state. The cluster calculation confirms 
this: la(t2 = 0)) = -4.878t1 > -(9 + f i ) + t , .  

(iii) It is useful to define a 'frustration gap': the loss of hybridisation energy of the 
'Zhang and Rice' state because of frustration. For the cluster this is (9 + f i ) i t ,  - 
4.878t1, which is positive. 

(iv) The corollary of (i) and (ii) is that the ground state energy of the Cu+ Hamiltonian 
is asymmetric for t l  + -tl,  with t l  < 0 yielding the lower ground state energy. Thus, the 
Hamiltonian resembles the motion of one hole at half filling in the strong-coupling 
Hubbard Hamiltonian on a fustrated lattice where the ground state energy is also 
asymmetric if the sign of the hopping matrix is changed. It is known, in that case, that 
for t > 0 (for hole motion) the ground state is not total spin maximum (Nagaoka 1966). 
The Cu' Hamiltonian is also in the frustrated limit ( t l  > 0) and therefore the ground 
state is certainly not total S = ( N  + 1)/2. 

(v) Finally, (iii) suggests that the hole motion in the S = ( N  - 1)/2 state is also 
frustrated and therefore the best candidate for the ground state is paramagnetism. 

(It is worth remarking here that the ground state energy of the Cu3+ Hamiltonian is 
also asymmetric for a change of sign in t 2 .  For a negative hopping amplitude (in this case 
t2 > 0) the ground state energy is -12t2 whereas for a positive hopping amplitude the 
ground state is the degenerate non-bonding orbitals at Ot,. Since the Cu3+ Hamiltonian 
is in the unfrustrated limit, however, the ground state is ferromagnetic consistent with 
the Pauli exclusion principle, i.e. total S = ( N  - 1)/2.) 

It has been shown that the ground state of the Cu+ limit is a total spin singlet for this 
cluster. The question therefore arises: How stable is this state with respect to the 'Zhang 
and Rice' state (la}) as the oxygen energy level is raised from the Cu' limit (A = 0) to 
the Cu3+ limit (A = U )  for this particular cluster? (Finite size effects will be considered 
shortly.) With this aim in mind the evolution of the energy of the states 1 a) and 1s) are 
calculated as a function of A for 0 < A S U. Figure 2 shows the relative energy difference 

For 0 s A < 0.37U the total spin singlet is the ground state whereas for 0.37U < 
A < U 'Zhang and Rice' is the ground state. (At A = 0.37U these states are degenerate 
and for this cluster there are no other ground states.) Thus the total spin singlet is stable 
over a wide energy range, and certainly stable over the energy range which corresponds 
to the experimental limit (Hass 1989). 

(&(Id) - &(l/w)/((&(I4) + &(Is))) as a fl"ion of N U .  

4. Conclusions 

In this paper the motion of an oxygen hole in the Cu02  lattice has been considered 
by exact diagonalisation of the strong-coupling Hamiltonian on a finite cluster. In 
the limit where virtual Cu" are excluded it was confirmed that the oxygen hole 
is bound in a singlet quasiparticle to a copper spin and that there is a direct 
mapping onto a one-band model with only nearest-neighbour hopping. The singlet 
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- 6 1  

Figure 2. Plot of the relative energy difference 
between the ‘Zhang and Rice’ state (In)) and the 
total spin singlet state ( Ip ) )  as a function of 
( E ~ -  EJ /U .  The total spin singlet is the ground 
state for 0 s ( E ~  - cd)/U < 0.37. 

polarises the remaining copper spins. However, in the more likely experimental 
scenario (Hass 1989)-namely when virtual Cu” excitations dominate-a one-band 
model (with only nearest-neighbour hopping) is not a useful approximation. For, 
in this case, the motion of the oxygen hole is frustrated and it drives the remaining 
copper spins into a total spin singlet: a result which would not have been predicted 
from a strong-coupling Hubbard Hamiltonian on a square lattice. Moreover, the 
paramagnetic state is stable with respect to the ‘Zhang and Rice’ ferromagnetic 
state for a wide energy range: 0 s A s 0.37U. It is worth while mentioning, 
however, that a one-band model with frustration, such as a strong-coupling Hubbard 
model with next-nearest-neighbour hopping of positive amplitude, would also give 
a low-spin ground state (Takano and Sano 1989). Thus it is important to distinguish 
between the deficiency of using a single-band model which includes only nearest- 
neighbour hopping and the possible deficiency of using a reduced Hilbert space. 

It is not posible to find the Bloch momentum of the hole in the ground state in this 
calculation because of the use of free boundary conditions. In an earlier paper (Long 
and Barford 1990a), however, an attempt was made to find the ground state for the Cul+ 
limit using a 2 X 2 plaquette (i.e. five spins) with free and periodic boundary conditions. 
There are two noteworthy features from the calculation. Firstly, for the free boundary 
condition calculation, the S = 4 (paramagnet) and S = P (‘Zhang and Rice’) states had 
remarkably similar energies of -4.738t1 and -4.753t1 respectively. The S = P state is 
just the ground state. This result is not equivocal however as the boundary effects favour 
high spin. In particular there is a loss of on-site energy arising from the copper atoms cut 
off from the exterior oxygen atoms. There would be a gain oft ,  for a hole occupying one 
of these oxygen atoms in a singlet with the (cut-off) copper spin and a loss of t l  if they 
were in a triplet. 

Secondly, for the periodic boundary condition calculation, which although intro- 
duces additional bonds does not suffer boundary effects and has translational invariance, 
S = 1 is the ground state with an energy of -5.293t1 and a Bloch momentum k = 
( n / a ) ( 4 ,  i) compared to -4.900t1 and k = 0 for the S = P state. 

The cluster in the present calculation is significantly larger than the 2 x 2 cluster. 
Not only are there the loops associated with a particular plaquette and the perimeter 
loop but the square is two-dimensionally connected and, of course, boundary effects are 
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reduced. The total spin singlet ground state is substantially lower in energy than the 
‘Zhang and Rice’ solution and in view of the considerations above this is the expected 
ground state for the lattice. Moreover the cluster calculation that the spin singlet state 
is stable with respect to the ‘Zhang and Rice’ state for A > 0.37U is probably a lower 
bound on A .  Finally, the Bloch momentum of the hole is expected to be at the non- 
interacting Fermi surface in the low-spin case. 

What has this calculation to say about the real cuprate superconductors? Experi- 
mentally it is observed that the undoped materials have a long-range staggered mag- 
netisation which is very well explained by a spin4 Heisenberg Hamiltonian with an 
antiferromagnetic exchange coupling constant J = 300 K (Chakravarty eta1 1989). Thus 
a model describing holes doped into the copper oxide planes should have an anti- 
ferromagnetic Heisenberg term. As holes are doped into the planes, the anti- 
ferromagnetic correlations are scrambled so that for sufficient concentration (-0.1) the 
NCel ordering is destroyed, although it is not yet known which spin correlations replace 
the NCel ones. 

In the t-J model one may qualitatively picture this as arising from polaronic 
distortions of the NCel ordering due to the propagating holes. There is a competition 
between minimising the kinetic energy of the holes (which means delocalising the 
hole in a region determined by Nagaoka phase coherence) and maximising the 
energy gained from NCel ordering. Since the kinetic energy of the holes prefer 
high spin, and antiferromagnetic interactions prefer low spin, these processes are 
at variance with one another. 

In contrast to this the kinetic energy of the hole in the two-band model with virtual 
Cul+ excitations and the t-t’-J model (namely both frustrated) prefer low spin and 
therefore there is less competition with the super-exchange. Thus, while all three models 
may well predict low-spin polaronic distortions of the NCel order (provided J / t  is not 
vanishingly small in the t-J model) the internal structure of these polarons may be quite 
different in the frustrated models and unfrustrated model. 
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Appendix. The non-orthogonality of the basis states 

In this appendix the overlap of the basis states (3.1) are shown. The relevant part of the 
basis states are represented in the following by iij) where i and j represent nearest- 
neighbour lattice positions. Thus, (S + I + S) = Q shows that a state with a singlet qua- 
siparticle on the ith site and an up spin on the jth site has an overlap of one eighth with 
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a state with a singlet and an up spin on thejth and ith sites respectively provided that the 
spins on the remaining lattice sites are the same. The non-zero overlaps are therefore: 

( S  + / +  S )  = 1/8 

(S $ 1 -  T,) = 1 / 4 f i  

(To + I +  To) = 1/8 

(To - 1 -  To) = 1/8 

( S  + I +  To) = - 1/8 (To + I -  T + ) =  - 1 / 4 f i  

( S  - 1 -  S )  = 1/8 

(S - 1 -  T,) = 1/8 

(S - / +  T - )  = - 1 / 4 ~  

(To - I +  T - ) =  1 / 4 f i  

( T ,  + I+  T,)  = 1/4 

( T -  - 1 -  T - )  = 1/4 
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